Texas Structural Impact Model (TX-SIM)

Jorge Barro

Baker Institute of Public Policy

October 18, 2017

Model Overview

Structural dynamic macroeconomic model

Calibrated to the State of Texas economy

Texas personal tax structure implemented

► Focus on key economic variables: consumption, income, labor, housing

Model Overview

Open economy with heterogeneous households

Elastic housing supply

► Household economic activity simulated over life-cycle

► Simulated data compared to survey data for model validation

Goals

Evaluate Texas fiscal policy alternatives

Allow for budget neutrality

Determine effects of fiscal reform on tax progressivity

▶ Show effects of policy change on key economic variables

Model Features

▶ Demographics: Overlapping generations, married/non-married households, population growth

Risk: survival, labor productivity, rental shock

Discrete choice in every period: Rent or own

► Taxes: Federal income tax (rigorous deductions), sales, and property

Owner's Bellman Equation

$$\begin{split} V_O^m(j,a,h,\epsilon) &= \max_{a',h',n} u(\tilde{c},1-n) \\ &+ s_{j+1}\beta E_{\{\epsilon'|\epsilon\}} \left[(1-p_R)V^m(j+1,a',h',\epsilon') + p_R V_R^m(j+1,a',h',\epsilon') \right] \\ \text{s.t.} \quad c &= (1+r)a - a' + (1-\delta_h)h - h' - \Phi(h,h') + \epsilon(1+g)^j n + \mathbf{1}_{\{j \geq T_r\}} ss - \tau \\ &\quad a' \geq -(1-\theta)h' \\ &\quad (1-\delta_h)h' + a' \geq 0 \\ &\quad h' \geq \underline{h} \\ &\quad n \in [0,1] \\ &\quad \tau = \tau_m^f(y_m^f) + \tau_{ss} \min \left\{ \epsilon(1+g)^j n, \bar{y}^{ss} \right\} + \tau_m \epsilon(1+g)^j n \\ &\quad + \tau_m^s(y_m^s) + \tau_c c + \tau_p(h') \end{split}$$

Renter's Bellman Equation

$$\begin{split} V_R^m(j,a,h,\epsilon) &= \max_{a',e,n} u(\tilde{c},1-n) \\ &+ s_{j+1}\beta E_{\{\epsilon'|\epsilon\}} \left[(1-p_R)V^m(j+1,a',0,\epsilon') + p_R V_R^m(j+1,a',0,\epsilon') \right] \\ \text{s.t. } c &= (1+r)a - a' - q^R e - \Phi(h,0) + \epsilon (1+g)^j n + \mathbf{1}_{\{j \geq T_r\}} ss - \tau \\ &\quad a' \geq 0 \\ &\quad e \geq 0 \\ &\quad n \in [0,1] \\ &\quad \tau = \tau_m^f(y_m^f) + \tau_{ss} \min \left\{ \epsilon (1+g)^j n, \bar{y}^{ss} \right\} + \tau_m \epsilon (1+g)^j n \\ &\quad + \tau_m^s(y_m^s) + \tau_c c \end{split}$$

Housing Decision

If no rental shock:

$$V^m(j, a, h, \epsilon) = \max\{V_O^m(j, a, h, \epsilon), V_R^m(j, a, h, \epsilon)\}$$
,

and if rental shock:

$$V^m(j, a, h, \epsilon) = V_R^m(j, a, h, \epsilon)$$

Federal Income Tax

- ▶ Federal income tax function $\tau_m^f(y_m^f)$
- Taxable income:

$$y = \max\{ra, 0\} + \epsilon (1+g)^j n + \mathbf{1}_{\{j \ge T_r\}} ss,$$

Federal tax deduction:

$$D_m^f(a, h') = \max \{ |\min \{ra, 0\}| + \tau_p(h'), \bar{D}_m^f \}.$$

▶ Taxable income:

$$y_m^f = \max\left\{y - D_m^f(a, h'), 0\right\}$$

Texas Property Tax

- Property tax features:
 - Property tax divided into M&O and non-M&O components: $\tau_{p,MO}$ and τ_{p} .
 - ▶ All home owners have homestead exemptions h^E .
 - ▶ Retired home owners have additional exemption on M&O tax: h^{MO} .

Texas property tax bill:

$$au_p max\left\{h'-h^E,0
ight\} + au_{p,MO} max\left\{h'-h^E-\mathbf{1}_{\{j\geq T_r\}}h^{MO},0
ight\}$$

Functional Forms

Utility:

$$u(\tilde{c}, 1-n) = \frac{\left(\tilde{c}^{\chi}(1-n)^{1-\chi}\right)^{1-\sigma}}{1-\sigma},$$

$$\tilde{c} = \left(\omega c^{\eta} + (1-\omega)h^{\eta}\right)^{\frac{1}{\eta}}.$$

▶ Federal Income Tax → Gouveia-Strauss:

$$\tau_m^f(y) = \kappa_0^m (y - (y^{-\kappa_1^m} + \kappa_2^m)^{-\frac{1}{\kappa_1^m}}).$$

Housing adjustment costs:

$$\Phi(h, h') = \begin{cases} 0 & \text{if } |h - h'| \leq \phi h \\ \rho_s h + \rho_b h' & \text{if } |h - h'| > \phi h \end{cases}$$

Parameterization

Table 1: Model Parameters				
Parameter	Value	Target/Source		
Preferences				
Consumption share (χ)	0.25	Average hours		
Risk aversion (σ)	3.5	Elas. of Intertemporal Sub.		
Discount factor (β)	1.06	Life-cycle ownership rate		
Elasticity of substitution (η)	0.145	Ogaki and Reinhart (1998)		
Non-housing consumption weight (ω)	0.79	Housing distribution		
Demographics				
Maximum lifetime (T)	46	Assumed		
Retirement age (T_r)	80	Assumed		
Survival probability (s_{i+1})	(See source)	CDC Life Tables (2008)		
Population growth (ν)	0.012	Attanasio, et al. (2010)		
Marriage probability (pm)	0.524	CPS data		
Housing				
Down payment (θ)	10%	Yang (2009)		
Rental shock probability (p_R)	12%	Ownership rate		
Minimum house value (\underline{h})	1 imes per capita income	Housing distribution		
Housing depreciation (δ_h)	1.4%	Yang (2009)		
Buying costs (ρ_b)	7.0%	Yang (2009)		
Selling costs (ρ_s)	2.5%	Yang (2009)		
Maximum cost-free value change (ϕ)	7.0%	Yang (2009)		
Labor Productivity				
Variance of entering workers (σ_v^2)	0.38	Huggett (1996)		
Persistence (ρ)	0.96	Huggett (1996)		
Variance of innovation $(\sigma_{arepsilon}^2)$	0.045	Huggett (1996)		

Policy Parameters

Table 2: Policy Parameters

rable = 1 chey randinesels			
Parameter	Value		
$ au_{\it c}$	8.25% (30% base)		
$ au_{p,MO}$	1.07%		
$ au_{m p}$	0.83%		
h ^E	\$25,000		
h ^{MO}	\$10,000		

Texas Productivity Profile

Income Distribution

Housing Distribution

Life-cycle Ownership

Ownership Rate by Income

Table 3: Comparing Housing Data to Model Values

Moment	Data (Source)	Model		
Home Ownership Rate	64.9% (CPS)	64.6%		
Mean Home Value	\$174,550 (ACS)	\$167,550		
Median Home Value	\$125,000 (ACS)	\$138,820		
Average Annual Property Tax	\$2,927 (CPS)	\$2,686		

Benchmark Progressivity

Counterfactual Experiment

▶ Policy experiment: eliminate the M&O portion of the property tax, raise the sales tax to maintain budget neutrality.

Results of policy experiment depend on whether rental market absorbs the property tax change.

► Case #1: Rental price unaffected

► Case #2: Rental price fully affected

Results Comparison

Table 4: Effects of Policy Reform

	Rental Unaffected Rental Fully Affected		
(, , , , , , , , , , , , , , , , , , ,	
τ_c (30% base)	14.99%	15.99%	
%∆ Hours Worked	-0.888	-0.002	
%Δ Per-capita Income	-2.877	-1.070	
Ppt. Δ Ownership Rate	6.909	-10.058	
%∆ Average Home Value	10.025	28.182	
%∆ Welfare	0.802	1.376	

Rental Unaffected: Tax Rate/Base Trade-off

Rental Fully Affected: Tax Rate/Base Trade-off

Rental Unaffected: State Tax Progressivity

Rental Fully Affected: State Tax Progressivity

Rental Fully Affected: Effective Tax Composition

Rental Unaffected: Housing

Rental Fully Affected: Housing

Conclusion

 Dynamic model measures economic consequences of fiscal reform.

- Baseline model replicates several moments of the Texas economy.
- Alternative assumptions imply different economic consequences.
- ► Either assumption results in welfare improvements from reducing property taxation.